Discussion: Why is Asset Demand Inelastic

by Carter Davis, Mahyar Kargar, and Jiacui Li

Leyla Han, Boston University

MFA 2024

1/12

Summary of the Paper

- Classical theory: demand elasticity $\left(\frac{d \ln w}{d \ln P}\right)$ is very high (\approx 7000)
- Empirically: measured demand elasticity is very low (\approx 2)
- This paper: What explains the divergence?
 - Decompose demand elasticity into two factors:
 - price pass-through
 - weight responsiveness (substitutability of assets)
 - Classical theory: both are large
 - expected return \$\mu = E\left[\frac{P_{t+1}}{P_t}\right]\$, \$\ln \mu = \ln E[P_{t+1}] \ln P_t\$. Assuming \$P_{t+1}\$ is constant gives \$-\frac{d \ln \mu}{d \ln P_t} = 1\$
 assets are almost perfectly substitutable
 - Empirically: both are small
 - $P_t \text{ can predict } P_{t+1}$
 - 2 measured substitutability is low

Main Comment: Outline

- Important in understanding why demand is inelastic in the data but elastic in classical models.
- Provide guidelines on what types of models that can produce inelastic demand
- Comment: Decomposition in general includes many other factors
 - Discuss other factors

Summary of the Paper: Model

• Optimal portfolio holding under mean-variance utility

$$w = \frac{1}{\gamma A} \Sigma^{-1} \mu$$

• expected return: $\mu_i = E\left[\frac{P_{i,t+1}}{P_{i,t}}\right]$; var-cov: $\Sigma_{i,j} = Cov\left(\frac{P_{i,t+1}}{P_{i,t}}, \frac{P_{j,t+1}}{P_{j,t}}\right)$

- For simplicity, define ρ_{i,j} as the (i, j)th element of Σ⁻¹ which depends on ALL elements of Σ
- Rewrite portfolio weight ($\gamma = 1, A = 1$):

$$w_i = \sum_{j=1}^n \rho_{i,j} \mu_j$$

Key of this paper: decompose the slope of demand curve

$$\frac{dw_i}{dP_{i,t}} = \frac{\partial w_i}{\partial \mu_i} \times \frac{\partial \mu_i}{\partial P_{i,t}} = \rho_{i,i} \frac{\partial \mu_i}{\partial P_{i,t}}$$
(1)

• $\frac{\partial w_i}{\partial \mu_i}$: weight responsiveness; $\frac{\partial \mu_i}{\partial P_{i,t}}$: price pass-through $\langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$ 4/12

Summary of the Paper: Intuition

$$\frac{dw_i}{dP_{i,t}} = \rho_{i,i} \frac{\partial \mu_i}{\partial P_{i,t}}$$

- Classical model implies $\rho_{i,i} \approx \infty$, $\frac{\partial \mu_i}{\partial P_{i,t}} \approx 1$, gives elasticity of 7000.
- This paper's estimation: $\rho_{i,i} \approx \frac{1}{0.006}$, $\frac{\partial \mu_i}{\partial P_{i,t}} \approx 0.06$, elasticity of 10.
- Both weight responsiveness and price pass-through are small in data
 - assets are not perfectly substitutable
 - P_t has predictive power for P_{t+1}
- This explains the divergence between theory and data.

Main Comment: Assumptions for Decomposition

• Slope of demand curve is, in general (from $w_i = \sum_{j=1}^n \rho_{i,j} \mu_j$)

$$\frac{dw_i}{dP_{i,t}} = \sum_{j=1}^n \left[\rho_{i,j} \frac{\partial \mu_j}{\partial P_{i,t}} + \mu_j \frac{\partial \rho_{i,j}}{\partial P_{i,t}} \right]$$
(2)

• i.e., change in $P_{i,t}$ can change all assets' expected returns and var-cov

- This paper's simple decomposition: $\frac{dw_i}{dP_{i,t}} = \rho_{i,i} \frac{\partial \mu_i}{\partial P_{i,t}}$
- Additional two assumptions need to be made:

$$\begin{array}{l} \begin{array}{l} \frac{\partial \mu_j}{\partial P_{i,t}} = 0 \text{ for } i \neq j \\ \\ \begin{array}{l} \frac{\partial \rho_{i,j}}{\partial P_{i,t}} = 0 \text{ for all } i, j \end{array}$$

• Comment: Examine the assumptions under which conditions these other terms can be ignored.

Assumption 1

• Assumption 1:
$$\frac{\partial \mu_j}{\partial P_{i,t}} = 0$$
 for $i \neq j$. i.e.,

$$\frac{\partial}{\partial P_{i,t}} E\left[\frac{P_{j,t+1}}{P_{j,t}}\right] = 0 \tag{3}$$

- How can this assumption fail?
 - In general equilibrium, all prices are determined simultaneously. If one price changes, all other prices have to change to clear the market.
 - Learning from prices, e.g., Admati (1985). When $P_{i,t}$ changes, it affects the belief of $E\left[\frac{P_{j,t+1}}{P_{i,t}}\right]$ for all other *j*.
- However, the above considerations in a frictionless partial equilibrium economy, which this paper focuses on, will likely be small.
 - Therefore, in what follows, I assume $P_{i,t+1}$ and $P_{j,t+1}$ will not change when $P_{i,t}$ changes.

Main Comment: Assumption 2

- Assumption 2: $\frac{\partial \rho_{i,j}}{\partial P_{i,t}} = 0$ for all i, j.
- Comment: $\frac{\partial \rho_{i,j}}{\partial P_{i,t}}$ has a first-order impact so that cannot be ignored — I call it "Var-Cov pass-through".
- This paper: price pass-through $\frac{\partial \mu_i}{\partial P_{i,t}}$ has a first-order impact on demand elasticity

$$\frac{\partial \mu_i}{\partial P_{i,t}} \equiv \lim_{\Delta \to 0} \frac{1}{\Delta} E \left[\frac{P_{i,t+1}}{P_{i,t} + \Delta} - \frac{P_{i,t+1}}{P_{i,t}} \right],$$

• Use the following approx: $\frac{P_{i,t+1}}{P_{i,t}+\Delta} - \frac{P_{i,t+1}}{P_{i,t}} \approx -\frac{P_{i,t+1}}{P_{i,t}^2}\Delta$,

$$\frac{\partial \mu_i}{\partial P_{i,t}} = -\frac{\mu_i}{P_{i,t}} \text{ does not converge to 0 when } \Delta \to 0.$$

• Question: how does "Var-Cov pass-through" $\frac{\partial \rho_{i,j}}{\partial P_{i,t}}$ behave?

Main Comment: Assumption 2

• Recall $\rho_{i,j} \equiv \Sigma_{i,j}^{-1}$, i.e., "Var-Cov pass-through" $\frac{\partial \rho_{i,j}}{\partial P_{i,t}}$ has the same order of impact as

$$\frac{\partial \Sigma_{i,j}}{\partial P_{i,t}} = \frac{\partial}{\partial P_{i,t}} Cov\left(\frac{P_{i,t+1}}{P_{i,t}}, \frac{P_{j,t+1}}{P_{j,t}}\right)$$

• For $i \neq j$ (let me call it "Cov pass-through"):

$$\begin{split} \frac{\partial \Sigma_{i,j}}{\partial P_{i,t}} &\equiv \lim_{\Delta \to 0} \frac{1}{\Delta} \left[Cov \left(\frac{P_{i,t+1}}{P_{i,t} + \Delta}, \frac{P_{j,t+1}}{P_{j,t}} \right) - Cov \left(\frac{P_{i,t+1}}{P_{i,t}}, \frac{P_{j,t+1}}{P_{j,t}} \right) \right] \\ &\approx \lim_{\Delta \to 0} \frac{1}{\Delta} Cov \left(-\frac{P_{i,t+1}}{P_{i,t}^2} \Delta, \frac{P_{j,t+1}}{P_{j,t}} \right) = -\frac{\Sigma_{i,j}}{P_{i,t}} \end{split}$$

• also has a first-order impact on demand elasticity (just as price pass-through $\frac{\partial \mu_i}{\partial P_{i,t}}$)!!

Main Comment: Assumption 2

• For i = j (let me call it "Var pass-through"):

$$\begin{array}{ll} \frac{\partial \Sigma_{i,i}}{\partial P_{i,t}} &\equiv & \lim_{\Delta \to 0} \frac{1}{\Delta} \left[\textit{Cov} \left(\frac{P_{i,t+1}}{P_{i,t} + \Delta}, \frac{P_{i,t+1}}{P_{i,t} + \Delta} \right) - \textit{Cov} \left(\frac{P_{i,t+1}}{P_{i,t}}, \frac{P_{i,t+1}}{P_{i,t}} \right) \right. \\ &= & -2 \frac{\Sigma_{i,i}}{P_{i,t}} \end{array}$$

• This is also a first-order impact on demand elasticity!

Suggestions

- Comment:
 - What are the sign and magnitude of "Var-Cov pass through"?
- Suggestions:
 - elaborate more on why you ignore "Var-Cov pass through"
 - perhaps provide a bound on the magnitude of those ignored terms
 - or explicitly estimate the ignored terms in the data

Conclusion

- Extremely interesting paper
- Important in understanding why demand is inelastic in the data but elastic in classical models
- Guidelines on what types of models that produce inelastic demand
 - Models with substitutable assets
 - Models with price reversal/momentum
- Elaborate clearly on model assumptions and estimate missing factors