Discussion: Information Flow, Noise, and the Irrelevance of FOMC Announcement Returns

by Oliver Boguth, Vincent Gregoire, and Charles Martineau

Leyla Han, Boston University

August 29, 2021

Basic Ideas

- A new approach to empirically quantify information efficiency
 - Unbiasedness regression R^2 instead of slope β
 - Identify noise in prices
- FOMC announcement returns are driven by noise and less informative
- This price inefficiency lasts about two weeks until the noise reverses itself

Summary of contribution

- A methodological contribution for testing information efficiency in prices
- An economic contribution:
 - Information content of price reaction to FOMC announcements
 - Add to the puzzle

Empirical Method: Price Informativeness

• Regress total mkt ret surrounding event i onto the partial ann ret ending at t

• Regression R^2 to estimate the evolution of price informativeness

(1)

Theoretical Foundation

Over short horizon, risk premium may not be important

$$p_t = \mathbb{E}_t \left[V \right]$$

 \rightarrow Price is a martingale

• Denote innovations in prices $\varepsilon_{t+1} = [\mathbb{E}_{t+1} - \mathbb{E}_t](V)$, then

$$p_t = p_0 + \sum_{j=1}^t \varepsilon_j$$

• Denote $Var(\varepsilon_j) = \sigma_j^2$

Beta

• Testing price efficiency is equivalent as testing martingale property

$$\sum_{j=1}^{T} \varepsilon_j = \alpha + \beta \sum_{j=1}^{t} \varepsilon_j + \text{error}$$

• Therefore, β is computed as

$$\beta = \frac{\operatorname{Cov}\left(\sum_{j=1}^{t} \varepsilon_{j}, \sum_{j=1}^{T} \varepsilon_{j}\right)}{\operatorname{Var}\left(\sum_{j=1}^{t} \varepsilon_{j}\right)} = \frac{\operatorname{Var}\left(\sum_{j=1}^{t} \varepsilon_{j}\right) + \operatorname{Cov}\left(\sum_{j=t+1}^{T} \varepsilon_{j}, \sum_{j=1}^{t} \varepsilon_{j}\right)}{\operatorname{Var}\left(\sum_{j=1}^{t} \varepsilon_{j}\right)}$$

• Under martingale property, innovations are uncorrelated

$$Cov\left(\sum_{j=t+1}^{T} \varepsilon_j, \sum_{j=1}^{t} \varepsilon_j\right) = 0 \rightarrow \beta = 1$$

• If $\beta > (<)1$, prices overreact (underreact) to new information

• Under martingale assumption, the corresponding R^2 is

$$R^{2} = \frac{Var\left(\sum_{j=1}^{t} \varepsilon_{j}\right)}{Var\left(\sum_{j=1}^{T} \varepsilon_{j}\right)} = \frac{\sum_{j=1}^{t} \sigma_{j}^{2}}{\sum_{j=1}^{T} \sigma_{j}^{2}} = \frac{Var\left(P_{t} - P_{0}\right)}{Var\left(P_{T} - P_{0}\right)}$$

- Additionally, if σ_j is a constant over time, then $R^2 = \frac{t}{T}$ is proportional to time *t*.
- Comment 1: Plot variance ratio of returns will help confirm the assumption of IID

With Noise θ

• If prices contain noise

$$p_t = \mathbb{E}_t \left[V
ight] + heta$$

• Assume noise dissipates at T, then price reverses to its true value

$$p_T = V$$

• R^2 is therefore

$$R^{2} = \frac{Var\left(\sum_{j=1}^{t}\varepsilon_{j}\right)}{Var\left(\sum_{j=1}^{T}\varepsilon_{j}\right)} \times \frac{Var\left(\sum_{j=1}^{t}\varepsilon_{j}\right)}{Var\left(\sum_{j=1}^{t}\varepsilon_{j}\right) + Var\left(\theta\right)} < \frac{Var\left(\sum_{j=1}^{t}\varepsilon_{j}\right)}{Var\left(\sum_{j=1}^{T}\varepsilon_{j}\right)} = \frac{t}{7}$$

With Noise θ Cont'd

- Comment 2: Would β test also detect mis-pricing?
- With noise θ in p_t ,

$$\beta = \frac{Cov\left(\sum_{j=1}^{t} \varepsilon_j + \theta, \sum_{j=1}^{T} \varepsilon_j\right)}{Var\left(\sum_{j=1}^{t} \varepsilon_j + \theta\right)}$$
$$= \frac{Var\left(\sum_{j=1}^{t} \varepsilon_j\right)}{Var\left(\sum_{j=1}^{t} \varepsilon_j\right) + Var\left(\theta\right)} < 1.$$

• Intuition: if p_t contains noise, it is less informative about P_T

Conclusion

- Makes an important methodological contribution
 - comment: clarify when R^2 works and β test fails
- Thought provoking: are FOMC announcement informative?
 - cannot take the strong stock market reaction as evidence
 - need a more careful empirical test
- All tests are based on the martingale property
 - evidence suggests risk premium on announcement days are large
 - how to take into account of risk premium?